Широтно-импульсная модуляция (ШИМ). Курсовая работа: Широтно-импульсный модулятор Чем отличаются резонансная схема от шим

Принцип ШИМ – широтно-импульсная модуляция заключается в изменении ширины импульса при постоянстве частоты следования импульса. Амплитуда импульсов при этом неизменна.

Широтно-импульсное регулирование находит применение там, где требуется регулировать подаваемую к нагрузке мощность. Например, в схемах управления электродвигателями постоянного тока, в импульсных преобразователях, для регулирования яркости светодиодных светильников, экранов ЖК-мониторов, дисплеев в смартфонах и планшетах и т.п.

Большинство вторичных источников питания электронных устройств в настоящее время строятся на основе импульсных преобразователей, применяется широтно-импульсная модуляция и в усилителях низкой (звуковой) частоты класса D, сварочных аппаратах, устройствах зарядки автомобильных аккумуляторов, инверторах и пр. ШИМ позволяет повысить коэффициент полезного действия (КПД) вторичных источников питания в сравнении с низким КПД аналоговых устройств.

Широтно-импульсная модуляция бывает аналоговой и цифровой.

Аналоговая широтно-импульсная модуляция

Как уже упоминалось выше, частота сигнала и его амплитуда при ШИМ всегда постоянны. Один из важнейших параметров сигнала ШИМ – это коэффициент заполнения, равный отношению длительности импульса t к периоду импульса T . D = t/T . Так, если имеем сигнал ШИМ с длительностью импульса 300 мкс и периодом импульса 1000 мкс, коэффициент заполнения составит 300/1000 = 0,3. Коэффициент заполнения также выражается в процентах, для чего коэффициент заполнения умножается на 100%. По примеру выше процентный коэффициент заполнения составляет 0,3 х 100% = 30%.

Скважность импульса – это отношение периода импульсов к их длительности, т.е. величина, обратная коэффициенту заполнения. S = T/t .

Частота сигнала определяется как величина, обратная периоду импульса, и представляет собой количество полных импульсов за 1 секунду. Для примера выше при периоде 1000 мкс = 0,001 с, частота составляет F = 1/0,001 – 1000 (Гц).

Смысл ШИМ заключается в регулировании среднего значения напряжения путем изменения коэффициента заполнения. Среднее значение напряжения равно произведению коэффициента заполнения и амплитуды напряжения. Так, при коэффициенте заполнения 0,3 и амплитуде напряжения 12 В среднее значение напряжения составит 0,3 х 12 = 3,6 (В). При изменении коэффициента заполнения в теоретически возможных пределах от 0% до 100% напряжение будет изменяться от 0 до 12 В, т.е. Широтно-импульсная модуляция позволяет регулировать напряжение в пределах от 0 до амплитуды сигнала. Что и используется для регулирования скорости вращения электродвигателя постоянного тока или яркости свечения светильника.

Сигнал ШИМ формируется микроконтроллером или аналоговой схемой. Этот сигнал обычно управляет мощной нагрузкой, подключаемой к источнику питания через ключевую схему на биполярном или полевом транзисторе. В ключевом режиме полупроводниковый прибор либо разомкнут, либо замкнут, промежуточное состояние исключается. В обоих случаях на ключе рассеивается ничтожная тепловая мощность. Поскольку эта мощность равна произведению тока через ключ на падение напряжения на нем, а в первом случае к нулю близок ток через ключ, а во втором напряжение.

В переходных состояниях на ключе присутствует значительное напряжение с прохождением значительного тока, т.е. значительна и рассеиваемая тепловая мощность. Поэтому в качестве ключа необходимо применение малоинерционных полупроводниковых приборов с быстрым временем переключения, порядка десятков наносекунд.

Если ключевая схема управляет светодиодом, то при малой частоте сигнала светодиод будет мигать в такт с изменением напряжения сигнала ШИМ. При частоте сигнала выше 50 Гц мигания сливаются вследствие инерции человеческого зрения. Общая яркость свечения светодиода начинает зависеть от коэффициента заполнения – чем ниже коэффициент заполнения, тем слабее светится светодиод.

При управлении посредством ШИМ скорости вращения двигателя постоянного тока частота ШИМ должна быть очень высокой, и лежать за пределами слышимых звуковых частот, т.е. превышать 15-20 кГц, в противном случае двигатель будет «звучать», издавая раздражающий слух писк с частотой ШИМ. От частоты зависит и стабильность работы двигателя. Низкочастотный сигнал ШИМ с невысоким коэффициентом заполнения приведет к нестабильной работе двигателя и даже возможной его остановке.

Тем самым, при управлении двигателем желательно повышать частоту сигнала ШИМ, но и здесь существует предел, определяемый инерционными свойствами полупроводникового ключа. Если ключ будет переключаться с запаздываниями, схема управления начнет работать с ошибками. Чтобы избежать потерь энергии и добиться высокого коэффициента полезного действия импульсного преобразователя, полупроводниковый ключ должен обладать высоким быстродействием и низким сопротивлением проводимости.

Сигнал с выхода ШИМ можно также усреднять посредством простейшего фильтра низких частот. Иногда можно обойтись и без этого, поскольку обладает определенной электрической индуктивностью и механической инерцией. Сглаживание сигналов ШИМ происходит естественным путем в том случае, когда частота ШИМ превосходит время реакции регулируемого устройства.

Реализовать ШИМ можно посредством с двумя входами, на один из которых подается периодический пилообразный или треугольный сигнал от вспомогательного генератора, а на другой модулирующий сигнал управления. Длительность положительной части импульса ШИМ определяется временем, в течение которого уровень управляющего сигнала, подаваемого на один вход компаратора, превышает уровень сигнала вспомогательного генератора, подаваемого на другой вход компаратора.

При напряжении вспомогательного генератора выше напряжения управляющего сигнала на выходе компаратора будет отрицательная часть импульса.

Коэффициент заполнения периодических прямоугольных сигналов на выходе компаратора, а тем самым и среднее напряжение регулятора, зависит от уровня модулирующего сигнала, а частота определяется частотой сигнала вспомогательного генератора.

Цифровая широтно-импульсная модуляция

Существует разновидность ШИМ, называемая цифровой ШИМ. В этом случае период сигнала заполняется прямоугольными подымпульсами, и регулируется уже количество подымпульсов в периоде, что и определяет среднюю величину сигнала за период.

В цифровой ШИМ заполняющие период подымпульсы (или «единички») могут стоять в любом месте периода. Среднее значение напряжения за период определяется только их количеством, при этом подымпульсы могут следовать один за другим и сливаться. Отдельно стоящие подымпульсы приводят к ужесточению режима работы ключа.

В качестве источника сигнала цифровой ШИМ можно использовать COM-порт компьютера с 10-битовым сигналом на выходе. С учетом 8 информационных битов и 2 битов старт/стоп, в сигнале COM-порта присутствует от 1 до 9 «единичек», что позволяет регулировать напряжение в пределах 10-90% напряжения питания с шагом в 10%.

-Почему в кинотеатрах так медленно гаснет свет?
-Потому, что киномеханик очень медленно вынимает вилку из розетки.

Знакомимся с широтно-импульсной модуляцией.

Ранее мы научились с помощью изменения состояния порта GPIO управлять светодиодом. Мы научились управлять длительностью и частотой импульсов, благодаря чему получили различные световые эффекты. Убедились в том, что если изменять состояние порта со звуковой частотой, то можно получать различные
звуки, освоили частотную модуляцию…

А что получится, если мы будем изменять уровень порта со звуковой частотой, но вместо динамика подключим нашего старого подопытного друга - светодиод?

Проведите эксперимент. Измените нашу программу blink.c так, чтобы светодиод загорался и гас 200 раз в секунду, с частотой 200 Гц. Для этого достаточно изменить параметры функции delay(). Чтобы узнать, какие задержки нужно ввести, достаточно рассчитать период колебания Т. Т=1/f . А т.к. f у нас равна 200Гц, то Т=1/200=0,005 секунды, или 5 миллисекунд. Вот за эти 5 миллисекунд мы должны успеть включить светодиод и выключить его 1 раз. Так, как 5 на 2 не делится нацело, примем время свечения светодиода в 2 мС, а время несвечения в 3мС. 2+3=5, т.е. полный период одного колебания так и останется 5мС. Теперь изменим программу: заменим delay(500), на delay(2) и delay(3) для горящего и не горящего
светодиода соответственно.

Скомпилируем программу и запустим. Если у вас всё ещё в схеме установлен динамик, то вы услышите низкий звук, а если динамик заменить светодиодом, то вы увидите непрерывно горящий светодиод. На самом деле светодиод конечно моргает, но делает он это на столько быстро, что глаз уже не замечает это моргание и воспринимает
его как непрерывное свечение. Но светит диод вроде бы не так ярко, как он у нас горел раньше. Можете для сравнения запустить нашу самую первую программу, где светодиод горел постоянно, и сравнить яркость светодиода в обоих случаях. Давайте разберёмся, почему так происходит и как это можно использовать.

Помните, в самой первой части мы рассчитывали токоограничивающий резистор для питания светодиода? Мы знаем, что у светодиода есть рабочий ток, при котором он светится наиболее ярко. Если этот ток уменьшать, то яркость светодиода будет тоже уменьшаться. А когда мы начинаем быстро включать и выключать светодиод, то
его яркость свечения становится зависимой от среднего тока (Iср) за период колебания. Для импульсного (П-образного) сигнала, который мы генерируем на выходе порта GPIO, средний ток будет пропорционален отношению t1 к t2. А именно: Iср=Iн x t1/t2, где Iн- номинальный ток светодиода, который мы благодаря резистору установили в 10мА. При номинальном токе светодиод светится наиболее ярко. А в нашем случае Iср=10 х 2/3 = 6,7мА. Мы видим, что ток стал меньше, поэтому и светодиод стал гореть менее ярко. В этой формуле отношение t1/t2 называется коэффициентом заполнения импульса D.

Чем этот коэффициент больше, тем больше будет среднее значение тока. Мы можем изменять этот коэффициент от 0 до 1, или от 0% до 100%. А значит, мы можем и менять средний ток в этих пределах. Получается, что таким способом мы можем регулировать яркость светодиода от максимальной, до полностью выключенного! И хотя напряжение на выводе нашего порта по-прежнему может быть лишь либо +3,3в, либо 0в, ток в нашей схеме может изменяться. И изменением этого тока мы легко можем управлять нашей Малинкой. Вот такой способ управления и называется Широтно-Импульсной модуляцией , или просто ШИМ . В английском языке это звучит как PWM , или Pulse-Width Modulation . ШИМ, это импульсный сигнал постоянной частоты с переменным коэффициентом заполнения. Используется и такое определение, как Импульсный сигнал постоянной частоты с переменной скважностью. Скважность S, это величина обратная коэффициенту заполнения и характеризует отношение периода импульса T к его длительности t1.
S=T/t1 = 1/D.

Ну а нам, для закрепления наших знаний, остаётся написать программку, которая будет плавно зажигать и гасить наш светодиод. Процесс изменения яркости свечения называется диммированием .

У меня получилось вот так:
dimmer.c
// Программа плавно изменяет яркость светодиода
// Светодиод подключён к порту Р1_03#include #define PIN RPI_GPIO_P1_03
int main()
{
if (!bcm2835_init()) return 1;

Bcm2835_gpio_fsel(PIN,BCM2835_GPIO_FSEL_OUTP);
//Устанавливаем порт Р1_03 на выводunsigned int t_on, t_off;
// t_on продолжительность включённого состояния= t1, а t_off- выключенного =t2

Int d = 100, i, j, flag=0; // d- коэффициент заполнения в процентах, i и j, вспомогательные переменные для организации циклов, flag- если =0 светодиод затухает, если =1 разгорается

Int a=10; // количество полных рабочих циклов
while (a)
{
for (j=100; j!=0; j--) //изменяем коэффициент заполнения от 100% до 0%
{
t_on=50*d; //находим t1
t_off=50*(100-d); //находим t2
if (flag==0) d=d-1; // если светодиод затухает, уменьшаем коэффициент заполнения
if (flag==1) d=d+1; // если светодиод разгорается, увеличиваем коэффициент заполнения

For (i=10; i!=0; i--) //передаём 10 импульсов на светодиод с рассчитанными параметрами t1 и t2
{
bcm2835_gpio_write(PIN, LOW);
delayMicroseconds(t_on);
bcm2835_gpio_write(PIN, HIGH);
delayMicroseconds(t_off);
}

If (d==0) flag=1; // если светодиод выключен, начинаем его включать
if (d==100) flag=0; // если светодиод достиг максимума свечения, начинаем его гасить
}

A--;
}
return (!bcm2835_close ()); // Выход из программы
}

Сохраняем программу под именем dimmer.c, компилируем и запускаем.

Как видите, теперь наш светодиод медленно гаснет и медленно разгорается. Вот так и работает ШИМ. Широтно-импульсная модуляция используется во многих областях. Это и управление яркостью свечения ламп и светодиодов, управление сервоприводами, регулирование напряжения в импульсных источниках питания (которые например, стоят в вашем компьютере), в цифро-аналоговых и аналого-цифровых преобразователях и т.д. К стати, если вернуться к нашей схеме с динамиком, то при помощи ШИМ можно управлять громкостью сигнала, а изменяя частоту- его тоном.

Помните старый анекдот из предисловия к этой части, о киномеханике, медленно вытягивающим вилку из розетки? Теперь то мы знаем, что этому киномеханику, чтобы плавно погасить свет, нужно наоборот очень быстро вставлять и вытаскивать вилку из розетки.

На этом мы и закончим данный урок. Остаётся лишь добавить, что ШИМ настолько часто используется в различных приложениях, что производители процессорного оборудования часто встраивают ШИМ-контроллер непосредственно в процессор. Т.е. вы процессору задаёте параметры требуемого вам сигнала, а процессор уже сам, без вашей помощи выдаёт нужный вам сигнал. При этом, нисколько не тратя программных ресурсов на генерацию этого сигнала. Bcm2835 тоже имеет встроенный аппаратный ШИМ. И этот ШИМ является альтернативной функцией порта GPIO 18, или P1-12. Чтобы воспользоваться аппаратными ШИМ мы должны установить порт P1-12 в режим ALT5 и задать процессору параметры. Но это уже совсем другая история…

Широтно-импульсная модуляция. Описание. Применение. (10+)

Широтно-импульсная модуляция

Одним из подходов, позволяющих уменьшить потери на нагрев силовых элементов схем, является применение переключательных режимов работы. При таких режимах силовой элемент либо открыт, тогда на нем практически нулевое падение напряжения, либо закрыт, тогда через него идет нулевой ток. Рассеиваемая мощность равна произведению силы тока на напряжение . Подробнее об этом по ссылке. В таком режиме удается добиться коэффициента полезного действия более 80%.

Чтобы получить на выходе сигнал нужной формы, силовой ключ открывается на определенное время, пропорциональное нужному выходному напряжению. Это и есть широтно-импульсная модуляция (ШИМ, PWM). Далее такой сигнал, состоящий из импульсов разной ширины, поступает в фильтр, состоящий из дросселя и конденсатора. На выходе фильтра получается практически идеальный сигнал нужной формы.

Применение широтно-импульсной модуляции (ШИМ)

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи. сообщений.

Еще статьи

Силовой мощный импульсный трансформатор. Расчет. Рассчитать. Онлайн. O...
Онлайн расчет силового импульсного трансформатора....

Как не перепутать плюс и минус? Защита от переполюсовки. Схема...
Схема защиты от неправильной полярности подключения (переполюсовки) зарядных уст...

Резонансный инвертор, преобразователь напряжения повышающий. Принцип р...
Сборка и наладка повышающего преобразователя напряжения. Описание принципа работ...

Колебательный контур. Схема. Расчет. Применение. Резонанс. Резонансная...
Расчет и применение колебательных контуров. Явление резонанса. Последовательные...

Простой импульсный прямоходовый преобразователь напряжения. 5 - 12 вол...
Схема простого преобразователя напряжения для питания операционного усилителя....

Корректор коэффициента мощности. Схема. Расчет. Принцип действия....
Схема корректора коэффициента мощности...

Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида...
Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при...

Силовой мощный импульсный трансформатор, дроссель. Намотка. Изготовить...
Приемы намотки импульсного дросселя / трансформатора....


При работе с множеством различных технологий часто стоит вопрос: как управлять мощностью, которая доступна? Что делать, если её необходимо понизить или повысить? Ответом на эти вопросы служит ШИМ-регулятор. Что он собой представляет? Где применяется? И как самому собрать такой прибор?

Что такое широтно-импульсная модуляция?

Без выяснения значения этого термина продолжать не имеет смысла. Итак, широтно-импульсная модуляция — это процесс управления мощностью, которая подводится к нагрузке, осуществляемая путём видоизменения скважности импульсов, которая делается при постоянной частоте. Существует несколько типов широтно-импульсной модуляции:

1. Аналоговый.

2. Цифровой.

3. Двоичный (двухуровневый).

4. Троичный (трехуровневый).

Что такое ШИМ-регулятор?

Теперь, когда мы знаем, что такое широтно-импульсная модуляция, можно поговорить и о главной теме статьи. Используется ШИМ-регулятор для того, чтобы регулировать напряжение питания и для недопущения мощных инерционных нагрузок в авто- и мототехнике. Это может звучать слишком сложно и лучше всего пояснить на примере. Допустим, необходимо сделать, чтобы лампы освещения салона меняли свою яркость не сразу, а постепенно. Это же относится к габаритным огням, автомобильным фарам или вентиляторам. Воплотить такое желание можно путём установки транзисторного регулятора напряжения (параметрический или компенсационный). Но при большом токе на нём будет выделяться чрезвычайно большая мощность и потребуется установка дополнительных больших радиаторов или дополнение в виде системы принудительного охлаждения с использованием маленького вентилятора, снятого с компьютерного устройства. Как видите, данный путь влечёт за собой много последствий, которые необходимо будет преодолеть.

Настоящим спасением из данной ситуации стал ШИМ-регулятор, который работает на мощных полевых силовых транзисторах. Они могут коммутировать большие токи (которые достигают 160 Ампер) при напряжении всего в 12-15В на затворе. Следует отметить, что сопротивление у открытого транзистора довольное мало, и благодаря этому можно заметно снизить уровень рассеиваемой мощности. Чтобы создать свой собственный ШИМ-регулятор, понадобится схема управления, которая сможет обеспечить разность напряжения между истоком и затвором в границах 12-15В. Если этого не получится достичь, то сопротивление канала будет сильно увеличиваться и значительно возрастёт рассеиваемая мощность. А это, в свою очередь, может привести к тому, что транзистор перегреется и выйдет из строя.

Выпускается целый ряд микросхем для ШИМ-регуляторов, которые смогут выдержать повышение входного напряжения до уровня 25-30В, при том, что питание будет всего 7-14В. Это позволит включать выходной транзистор в схеме вместе с общим стоком. Это, в свою очередь, необходимо для подключения нагрузки с общим минусом. В качестве примеров можно привести такие образцы: L9610, L9611, U6080B ... U6084B. Большинство нагрузок не потребляет ток больше 10 ампер, поэтому они не могут вызвать просадку напряжения. И как результат - использовать можно и простые схемы без доработки в виде дополнительного узла, который будет повышать напряжение. И именно такие образцы ШИМ-регуляторов и будут рассмотрены в статье. Они могут быть построены на основе несимметрического или ждущего мультивибратора. Стоит поговорить про ШИМ-регулятор оборотов двигателя. Об этом далее.

Схема №1

Эта схема ШИМ-регулятора собиралась на инверторах КМОП-микросхемы. Она является генератором прямоугольных импульсов, который действует на 2-х логических элементах. Благодаря диодам здесь отдельно изменяется постоянная времени разряда и заряда частотозадающего конденсатора. Это позволяет менять скважность, которую имеют выходные импульсы, и как результат - значение эффективного напряжения, которое есть на нагрузке. В данной схеме возможно использование любых инвертирующих КМОП-элементов, а также ИЛИ-НЕ и И. В качестве примеров подойдут К176ПУ2, К561ЛН1, К561ЛА7, К561ЛЕ5. Можно использовать и другие виды, но перед этим придётся хорошо подумать о том, как правильно сгруппировать их входы, чтобы они могли выполнять возложенный функционал. Преимущества схемы - доступность и простота элементов. Недостатки - сложность (практически невозможность) доработки и несовершенство относительно изменения диапазона выходного напряжения.

Схема №2

Обладает лучшими характеристиками, нежели первый образец, но сложнее в выполнении. Может регулировать эффективное напряжение на нагрузке в диапазоне 0-12В, до которого изменяется с начального значения 8-12В. Максимальный ток зависит от типа полевого транзистора и может достигать значительных значений. Учитывая, что выходное напряжение является пропорциональным входному управляющему, данную схему можно использовать как часть системы регулирования (для поддержки уровня температуры).

Причины распространения

Чем привлекает автолюбителей ШИМ-регулятор? Следует отметить стремление к увеличению КПД, когда проводится построение вторичных для электронной аппаратуры. Благодаря данному свойству можно данную технологию найти также при изготовлении компьютерных мониторов, дисплеев в телефонах, ноутбуках, планшетах и подобной техники, а не только в автомобилях. Также следует отметить значительную дешевизну, которой отличается данная технология при своём использовании. Также, если решите не покупать, а собирать ШИМ-регулятор собственноручно, то можно сэкономить деньги при усовершенствовании своего собственного автомобиля.

Заключение

Что ж, вы теперь знаете, что собой представляет ШИМ-регулятор мощности, как он работает, и даже можете сами собрать подобные устройства. Поэтому, если есть желание поэкспериментировать с возможностями своего автомобиля, можно сказать по этому поводу только одно - делайте. Причем можете не просто воспользоваться представленными здесь схемами, но и существенно доработать их при наличии соответствующих знаний и опыта. Но даже если всё не получится с первого раза, то вы сможете получить очень ценную вещь - опыт. Кто знает, где он может в следующий раз пригодиться и насколько важным будет его наличие.

ШИМ или PWM (англ. Pulse-Width Modulation) — широтно-импульсная модуляция — это метод предназначен для контроля величины напряжения и тока. Действие ШИМ заключается в изменении ширины импульса постоянной амплитуды и постоянной частотой.

Свойства ШИМ регулирования используются в импульсных преобразователях, в схемах управления двигателями постоянного тока или яркостью свечения светодиодов.

Принцип действия ШИМ

Принцип действия ШИМ, как указывает на это само название, заключается в изменении ширины импульса сигнала. При использовании метода широтно-импульсной модуляции, частота сигнала и амплитуда остаются постоянными. Самым важным параметром сигнала ШИМ является коэффициент заполнения, который можно определить по следующей формуле:

Также можно отметить, что сумма времени высокого и низкого сигнала определяет период сигнала:

где:

  • Ton — время высокого уровня
  • Toff — время низкого уровня
  • T — период сигнала

Время высокого уровня и время низкого уровня сигнала показано на нижнем рисунке. Напряжение U1- это состояния высокого уровня сигнала, то есть его амплитуда.

На следующем рисунке представлен пример сигнала ШИМ с определенным временным интервалом высокого и низкого уровня.

Расчет коэффициента заполнения ШИМ

Расчет коэффициента заполнения ШИМ на примере:

Для расчета процентного коэффициента заполнения необходимо выполнить аналогичные вычисления, а результат умножить на 100%:

Как следует из расчета, на данном примере, сигнал (высокого уровня) характеризуется заполнением, равным 0,357 или иначе 37,5%. Коэффициент заполнения является абстрактным значением.

Важной характеристикой широтно-импульсной модуляции может быть также частота сигнала, которая рассчитывается по формуле:

Значение T, в нашем примере, следует взять уже в секундах для того, чтобы совпали единицы в формуле. Поскольку, формула частоты имеет вид 1/сек, поэтому 800ms переведем в 0,8 сек.

Благодаря возможности регулировки ширины импульса можно изменять, например, среднее значение напряжения. На рисунке ниже показаны различные коэффициенты заполнения при сохранении той же частоты сигналов и одной и той же амплитуды.

Для вычисления среднего значения напряжения ШИМ необходимо знать коэффициент заполнения, поскольку среднее значение напряжения является произведением коэффициента заполнения и амплитуды напряжения сигнала.
Для примера, коэффициент заполнения был равен 37,5% (0,357) и амплитуда напряжения U1 = 12В даст среднее напряжение Uср:

В этом случае среднее напряжение сигнала ШИМ составляет 4,5 В.

ШИМ дает очень простую возможность понижать напряжение в диапазоне от напряжения питания U1 и до 0. Это можно использовать, например, для , или скорости вращения двигателя DC (постоянного тока), питающиеся от величины среднего напряжения.

Сигнал ШИМ может быть сформирован микроконтроллером или аналоговой схемой. Сигнал от таких схем характеризуется низким напряжением и очень малым выходным током. В случае необходимости регулирования мощных нагрузок, следует использовать систему управления, например, с помощью транзистора.

Это может быть биполярный или полевой транзистор. На следующих примерах будет использован .



Пример управления светодиодом при помощи ШИМ.

Сигнал ШИМ поступает на базу транзистора VT1 через резистор R1, иначе говоря, транзистор VT1 с изменением сигнала то включается, то выключается. Это подобно ситуации, при которой транзистор можно заменить обычным выключателем, как показано ниже:


Когда переключатель замкнут, светодиод питается через резистор R2 (ограничивающий ток) напряжением 12В. А когда переключатель разомкнут, цепь прерывается, и светодиод гаснет. Такие переключения с малой частотой в результате дадут .

Однако, если необходимо управлять интенсивностью свечения светодиодов необходимо увеличить частоту сигнала ШИМ, так, чтобы обмануть человеческий глаз. Теоретически переключения с частотой 50 Гц уже не незаметны для человеческого глаза, что в результате дает эффект уменьшения яркости свечения светодиода.

Чем меньше коэффициент заполнения, тем слабее будет светиться светодиод, поскольку во время одного периода светодиод будет гореть меньшее время.

Такой же принцип и подобную схему можно использовать и для . В случае двигателя необходимо, однако, применять более высокую частоту переключений (выше 15-20 кГц) по двум причинам.

Первая из них касается звука, какой может издавать двигатель (неприятный писк). Частота 15-20 кГц является теоретической границей слышимости человеческого уха, поэтому частоты выше этой границы будут неслышны.

Второй вопрос касается стабильности работы двигателя. При управлении двигателем низкочастотным сигналом с малым коэффициентом заполнения, обороты двигателя будут нестабильны или может привести к его полной остановке. Поэтому, чем выше частота сигнала ШИМ, тем выше стабильность среднего выходного напряжения. Также меньше пульсаций напряжения.

Не следует, однако, слишком завышать частоту сигнала ШИМ, так как при больших частотах транзистор может не успеть полностью открыться или закрыться, и схема управления будет работать не правильно. Особенно это относится к полевым транзисторам, где время перезарядки может быть относительно большое, в зависимости от конструкции.

Слишком высокая частота сигнала ШИМ также вызывает увеличение потерь на транзисторе, поскольку каждое переключение вызывает потери энергии. Управляя большими токами на высоких частотах необходимо подобрать быстродействующий транзистор с низким сопротивлением проводимости.

Управляя , следует помнить о применении диода для защиты транзистор VТ1 от индукционных всплесков, появляющимся в момент выключения транзистора. Благодаря использованию диода, индукционный импульс разряжается через него и внутреннее сопротивление двигателя, защищая тем самым транзистор.



Схема системы управления скоростью вращения двигателя постоянного тока с защитным диодом.

Для сглаживания всплесков питания между клеммами двигателя, можно подключить к ним параллельно конденсатор небольшой емкости (100nF), который будет стабилизировать напряжение между последовательными переключениями транзистора. Это также снизит помехи, создаваемые частыми переключениями транзистора VT1.

mob_info