Нуклеиновые кислоты в отличие от белков. Белки в отличие от нуклеиновых кислот

1. Функции вирусных нуклеиновых кислот

2. Вирусные белки

3. Процессы взаимодействия вируса с клеткой макроорганизма

1.Функция вирусных нуклеиновых кислот независимо от их типа состоит в хранении и передаче генетической информации. Ви­русные ДНК могут быть линейными (как у эукариотов) или кольцевыми (как у прокариотов), однако в отличие от ДНК тех и других она может быть представлена однонитевой молеку­лой. Вирусные РНК имеют разную организацию (линейные, кольцевые, фрагментированные, однонитевые и двунитевые), они могут быть представлены плюс- или минус-нитями. Плюс-нити функционально тождественны и-РНК, т. е. спо­собны транслировать закодированную в них генетическую ин­формацию на рибосомы клетки хозяина.

Минус-нити не могут функционировать как и-РНК, и для трансляции содержащейся в них генетической информации необходим синтез комплементарной плюс-нити. РНК плюс-нитевых вирусов, в отличие от РНК минус-нитевых, имеют специфические образования, необходимые для узнавания рибосомами. У двунитевых как ДНК-, так и РНК-содержащих вирусов информация обычно записана только в одной цепи, чем достигается экономия генетического материала. 2. Вирусные белки по локализации в вирионе делятся:

На капсидные;

Белки суперкапсидной оболочки;

Геномные.

Белки капсидной оболочки у нуклеокапсидных вирусов вы­полняют защитную функцию - защищают вирусную нуклеино­вую кислоту от неблагоприятных воздействий - и рецептор-ную (якорную) функцию, обеспечивая адсорбцию вирусов на клетках хозяина и проникновение в них.

Белки суперкапсидной оболочки, как и белки капсидной обо­лочки, выполняют защитную и рецепторную функции. Это сложные белки - липо- и гликопротеиды. Некоторые из этих белков могут формировать морфологические субъединицы в виде шипованных отростков и обладают свойствами гемагглю-тининов (вызывают агглютинацию эритроцитов) или нейрами-нидазы (разрушают нейраминовую кислоту, входящую в состав клеточных стенок).

Отдельную группу составляют геномные белки, они ковалентно связаны с геномом и образуют с вирусной нуклеиновой кисло­той рибо- или дезоксирибонуклеопротеиды. Основная функ­ция геномных белков - участие в репликации нуклеиновой кислоты и реализации содержащейся в ней генетической ин­формации, к ним относятся РНК-зависимая РНК-полимераза и обратная транскриптаза.



В отличие от белков капсидной и суперкапсидной оболочки это не структурные, а функциональные белки. Все вирусные белки выполняют и функцию антигенов, по­скольку являются продуктами вирусного генома и, соответст­венно, чужеродными для организма хозяина. Представители царства Vira по типу нуклеиновой кислоты де­лятся на 2 подцарства - рибовирусные и дезоксирибовирусные. В подцарствах выделяют семейства, рода и виды. Принад­лежность вирусов к тому или иному семейству (всего их 19) оп­ределяется :

строением и структурой нуклеиновой кислоты;

Типом симметрии нуклеокапсида;

Наличием суперкапсидной оболочки. Принадлежность к тому или иному родуи виду связана с другими биологическими свойствами вирусов :

Размером вирионов (от 18 до 300 нм);

Способностью размножаться в культурах ткани и курином эм­брионе;

Характером изменений, происходящих в клетках под воздейст­вием вирусов;

Антигенными свойствами;

Путями передачи;

Кругом восприимчивых хозяев.

Вирусы - возбудители болезней человека относятся к 6 ДНК- содержащим семействам (поксвирусы, герпесвирусы, гепаднави-русы, аденовирусы, паповавирусы, парвовирусы) и 13 семействам РНК-содержащих вирусов (реовирусы, тогавирусы, флавирусы, коронавирусы, парамиксовирусы, ортомиксовирусы, рабдовирусы, бунъявирусы, аренавирусы, ретровирусы, пикорнавиру-сы, калицивирусы, филовирусы).

3. Взаимодействие вируса с клеткой - это сложный процесс, ре­зультаты которого могут быть различны. По этому признаку (конечный результат) можно выделить 4 типа взаимодействия вирусов и клеток:

%/ продуктивная вирусная инфекция - это такой тип взаимодейст­вия вируса с клеткой, при котором происходит репродукция ви­русов, а клетка погибает (для бактериофагов такой тип взаи­модействия с клеткой называют литическим). Продуктивная вирусная инфекция лежит в основе острых вирусных заболева­ний, а также в основе условных латентных инфекций, при ко­торых погибают не все клетки пораженного органа, а только часть, а остальные неповрежденные клетки этого органа ком­пенсируют его функции, вследствие чего заболевание некото­рое время не проявляется, пока не наступит декомпенсация;

абортивная вирусная инфекция - это такой тип взаимодействия вируса с клеткой, при котором репродукция вирусов не происхо­дит, а клетка избавляется от вируса, функции ее при этом не нарушаются, поскольку это происходит только в процессе ре­продукции вируса;

латентная вирусная инфекция - это такой тип взаимодействия вируса с клеткой, при котором происходит репродукция и виру­сов, и клеточных компонентов, но клетка не погибает; при этом клеточные синтезы преобладают, и поэтому клетка достаточно длительно сохраняет свои функции - этот механизм лежит в основе безусловных латентных вирусных инфекций;

вирус-индуцированные трансформации - это такой тип взаимо­действия вируса с клеткой, при котором клетки, пораженные вирусом, приобретают новые, ранее не присущие им свойства. Геном вируса или его часть встраивается в геном клетки, и ви­русные гены превращаются в группу клеточных генов. Этот интегрированный в хромосому клетки-хозяина вирусный ге­ном называется провирусом, а такое состояние клеток обозна­чается как вирогения.

При любом из указанных типов взаимодействия вирусов и клеток можно выделить процессы, направленные на то, чтобы доставить вирусную нуклеиновую кислоту в клетку, обеспечить условия и механизмы ее репликации и реализации содержа­щейся в ней генетической информации.

Вопрос 39. Особенности репродукции вирусов

1. Периоды осуществления продуктивной вирусной инфекции

2. Репликация вируса

3. Трансляция

1.Продуктивная вирусная инфекция осуществляется в 3 периода :

начальный период включает стадии адсорбции вируса на клетке, проникновения в клетку, дезинтеграции (депротеинизации) или "раздевания" вируса. Вирусная нуклеиновая кислота была доставлена в соответствующие клеточные структуры и под дей­ствием лизосомальных ферментов клетки освобождается от защитных белковых оболочек. В итоге формируется уникаль­ная биологическая структура: инфицированная клетка содер­жит 2 генома (собственный и вирусный) и 1 синтетический аппарат (клеточный);

После этого начинается вторая группа процессов репродукции вируса, включающая средний и заключительный периоды, во время которых происходят репрессия клеточного и экспрессия вирусного генома. Репрессию клеточного генома обеспечивают низкомолекулярные регуляторные белки типа гистонов, синтезируемые в любой клетке. При вирусной инфекции этот про­цесс усиливается, теперь клетка представляет собой структуру, в которой генетический аппарат представлен вирусным геномом, а синтетический аппарат - синтетическими системами клетки.

2. Дальнейшее течение событий в клетке направлено на репликацию вирусной нуклеиновой кислоты (синтез генетического материала для новых вирионов) и реализацию содержащейся в ней генети­ческой информации (синтез белковых компонентов для новых вирионов). У ДНК-содержащих вирусов, как в прокариотиче-ских, так и в эукариотических клетках, репликация вирусной ДНК происходит при участии клеточной ДНК-зависимой ДНК-полимеразы. При этом у однонитевых ДНК-содержащих вирусов сначала образуется комплементарная нить - так назы­ваемая репликативная форма, которая служит матрицей для дочерних молекул ДНК.

3. Реализация генетической информации вируса, содержащейся в ДНК, происходит следующим образом: при участии ДНК-зави­симой РНК-полимеразы синтезируются и-РНК, которые по­ступают на рибосомы клетки, где и синтезируются вирусспе-цифические белки. У двунитевых ДНК-содержащих вирусов, геном которых транскрибируется в цитоплазме клетки хозяина, это собственный геномный белок. Вирусы, геномы которых транскрибируются в ядре клетки, используют содержащуюся там клеточную ДНК-зависимую РНК-полимеразу.

У РНК-содержащих вирусов процессы репликации их генома, транскрипции и трансляции генетической информации осуще­ствляются иными путями. Репликация вирусных РНК, как минус-, так и плюс-нитей, осуществляется через репликативную форму РНК (комплементарную исходной), синтез которой обеспечивает РНК-зависимая РНК-полимераза - это геном­ный белок, который есть у всех РНК-содержащих вирусов. Ре­пликативная форма РНК минус-нитевых вирусов (плюс-нить) служит не только матрицей для синтеза дочерних молекул ви­русной РНК (минус-нитей), но и выполняет функции и-РНК, т. е. идет на рибосомы и обеспечивает синтез вирусных белков (трансляцию).

У плюс-нитевых РНК-содержащих вирусов функцию трансля­ции выполняют ее копии, синтез которых осуществляется че­рез репликативную форму (минус-нить) при участии вирусных РНК-зависимых РНК-полимераз.

У некоторых РНК-содержащих вирусов (реовирусы) имеется со­вершенно уникальный механизм транскрипции. Он обеспечива­ется специфическим вирусным ферментом - ревертазой (обрат­ной транскриптазой) и называется обратной транскрипцией. Суть ее состоит в том, что вначале на матрице вирусной РНК при участии обратной транскрипции образуется транскрипт, представляющий собой одну нить ДНК. На нем с помощью клеточной ДНК-зависимой ДНК-полимеразы синтезируется,вторая нить и формируется двунитевой ДНК-транскрипт. С не­го обычным путем через образование и-РНК происходит реа­лизация информации вирусного генома.

Результатом описанных процессов репликации, транскрипции и трансляции является образование дочерних молекул вирусной нуклеиновой кислоты и вирусных белков, закодированных в геноме вируса.

После этого наступает третий, заключительный период взаимо­действия вируса и клетки. Из структурных компонентов (нук­леиновых кислот и белков) на мембранах цитоплазматического ретикулума клетки собираются новые вирионы. Клетка, геном которой был репрессирован (подавлен), обычно гибнет. Вновь сформировавшиеся вирионы пассивно (в результате гибели клетки) или активно (путем почкования) покидают клетку и оказываются в окружающей ее среде.

Таким образом, синтез вирусных нуклеиновых кислот и белков и сборка новых вирионов происходят в определенной последова­тельности (разобщены во времени) и в разных структурах клетки (разобщен в пространстве), в связи с чем способ репро­дукции вирусов и был назван дизъюнктивным (разобщенным). При абортивной вирусной инфекции процесс взаимодействия вируса с клеткой по тем или иным причинам прерывается до того, как произошло подавление клеточного генома. Очевидно, что в этом случае генетическая информация вируса реализова­на не будет и репродукции вируса не происходит, а клетка со­храняет свои функции неизменными.

При латентной вирусной инфекции в клетке одновременно функционируют оба генома, а при вирус-индуцированных трансформациях вирусный геном становится частью клеточно­го, функционирует и наследуется вместе с ним.

Вопрос 40. Культивирование вирусов в культурах тканей

1. Характеристики тканевых культур

2. Цитопатическое действие вирусов

1.Для культивирования вирусов используют ряд методов. Это культивирование в организме экспериментальных животных, раз­вивающихся куриных вибрионах и культурах тканей (чаще - эмбриональные ткани или опухолевые клетки). Для выращива­ния клеток тканевых культур используют многокомпонентные питательные среды (среда 199, среда Игла и др.). Они содержат индикатор измерения рН среды и антибиотики для подавления возможного бактериального загрязнения.

Культуры тканей могут быть переживающими, в которых жиз­неспособность клеток удается сохранить лишь временно, и растущими, в которых клетки не только сохраняют жизнедея­тельность, но и активно делятся.

В роллерных культурах клетки ткани фиксированы на плотной основе (стекло) - чаще в один слой (однослойные), а в суспензированных -взвешены в жидкой среде. По количеству пассажей, выдерживаемых растущей культурой тканей, среди них различают:

первичные (первично-трипсинизированные) культуры тканей, которые выдерживают не более 5-10 пассажей;

полуперевиваемые культуры тканей, которые поддерживаются не более чем в 100 генерациях;

перевиваемые культуры тканей, которые поддерживаются в те­чение неопределенно длительного срока в многочисленных ге­нерациях.

Чаще всего используются однослойные первично-перевиваемые и перевиваемые тканевые культуры.

2. О размножении вирусов в культуре ткани можно судить по ци-топатическому действию (ЦПД):

Деструкции клеток;

Изменению их морфологии;

Формированию многоядерных симпластов или синтиция в ре­зультате слияния клеток.

В клетках культуры ткани при размножении вирусов могут об­разовываться включения - структуры, не свойственные нор­мальным клеткам.

Включения выявляются в окрашенных по Романовскому-Гимзе мазках из зараженных клеток. Они бывают эозинофильные и базофильные.

По локализации в клетке различают:

Цитоплазматические;

Ядерные;

Смешанные включения.

Характерные ядерные включения формируются в клетках, за­раженных вирусами герпеса (тельца Каудри), цитомегалии и полиомы, аденовирусами, а цитоплазматические включения - вирусами оспы (тельца Гварниери и Пашена), бешенства (тель­ца Бабеша-Негри) и др.

О размножении вирусов в культуре ткани также можно судить по методу "бляшек" (негативных колоний). При культивирова­нии вирусов в клеточном монослое под агаровым покрытием на месте пораженных клеток образуются зоны деструкции моно-сом - так называемые стерильные пятна, или бляшки. Это дает возможность не только определить число вирионов в 1 мл сре­ды (считается, что одна бляшка является потомством одного вириона), но и дифференцировать вирусы между собой по фе­номену бляшкообразования.

Следующим методом, позволяющим судить о размножении вирусов (только гемагглютинирующих) в культуре ткани, мож­но считать реакцию гемадсорбции. При культивировании виру­сов, обладающих гемагглютжирующей активностью, может происходить избыточный синтез гемагглютининов. Эти моле­кулы экспрессируются на поверхности клеток культуры ткани, и клетки культуры ткани приобретают способность адсорбиро­вать на себе эритроциты - феномен гемадсорбции. Молекулы гемагглютинина накапливаются и в среде культивирования, это приводит к тому, что культуральная жидкость (в ней нака­пливаются новые вирионы) приобретет способность вызывать гемагглютинацию.

Наиболее распространенным методом оценки размножения вирусов в культуре ткани является метод "цветной пробы". При размножении в питательной среде с индикатором незараженных

клеток культуры ткани вследствие образования кислых продук­тов метаболизма она изменяет свой цвет. При репродукции вируса нормальный метаболизм клеток нарушается, кислые продукты не образуются, среда сохраняет исходный цвет.

Вопрос 41. Механизмы противовирусной защиты макроорган изма

/. Неспецифические механизмы

2. Специфические механизмы

3. Интерфероны

1. Существование вирусов в 2 (внеклеточной и внутриклеточной) формах предопределяют и особенности иммунитета при вирус­ных инфекциях. В отношении внеклеточных вирусов действуют те же неспецифические и специфические механизмы антимик­робной резистентности, что и в отношении бактерий. Клеточная ареактивность - один из неспецифических факто­ров защиты. Она обусловлена отсутствием на клетках рецеп­торов для вирусов, что делает их невосприимчивыми к вирус­ной инфекции. К этой же группе защитных факторов можно отнести лихорадочную реакцию, выделительные механизмы (чихание, кашель и др.). В защите от внеклеточного вируса участвуют:

Система комплемента;

Пропердиновая система;

NK-клетки (естественные киллеры);

Вирусные ингибиторы.

Фагоцитарный механизм защиты малоэффективен в отноше­нии внеклеточного вируса, но достаточно активен в отношении клеток, уже инфицированных вирусом. Экспрессия на поверхно­сти таких вирусных белков делает их объектом макрофагально-го фагоцитоза. Поскольку вирусы представляют собой ком­плекс антигенов, то при их попадании в организм развивается иммунный ответ и формируются специфические механизмы защиты - антитела и эффекторные клетки.

2. Антитела действуют только на внеклеточный вирус, препятст­вуя его взаимодействию с клетками организма и неэффектив­ны против внутриклеточного вируса. Некоторые вирусы (вирус гриппа, аденовирусы) недоступны для циркулирующих в сыворотке крови антител и способны персистировать в организме человека достаточно долго, иногда пожизненно.

При вирусных инфекциях происходит продукция антител классов IgG и IgM, а также секреторных антител класса IgA. Последние обеспечивают местный иммунитет слизистых обо­лочек на входных воротах, что при развитии вирусных инфек­ций желудочно-кишечного тракта и дыхательных путей может иметь определяющее значение. Антитела класса IgM появля­ются на 3-5-й день болезни и через несколько недель исчеза­ют, поэтому их наличие в сыворотке обследуемого отражает острую или свежеперенесенную инфекцию. Иммуноглобули­ны G появляются позже и сохраняются дольше, чем иммуног­лобулины М. Они обнаруживаются только через 1-2 недели после начала заболевания и циркулируют в крови в течение длительного времени, обеспечивая тем самым защиту от по­вторного заражения.

Еще более важную роль, чем гуморальный иммунитет, при всех вирусных инфекциях играет клеточный иммунитет, что связано с тем, что инфицированные вирусом клетки становят­ся мишенью для цитолитического действия Т-киллеров. Кроме всего прочего, особенностью взаимодействия вирусов с иммунной системой является способность некоторых из них (так называемые лимфотропные вирусы) поражать непосредст­венно сами клетки иммунной системы, что приводит к разви­тию иммунодефицитных состояний.

Все перечисленные" механизмы защиты (исключая фагоцитоз зараженных клеток) активны только в отношении внеклеточ­ного вируса. Попав в клетку, вирионы становятся недоступ­ными ни для антител, ни для комплемента, ни для иных меха­низмов защиты. Для защиты от внутриклеточного вируса в ходе эволюции клетки приобрели способность вырабатывать осо­бый белок - интерферон.

3. Интерферон - это естественный белок, обладающий противови­русной активностью в отношении внутриклеточных форм вируса. Он нарушает трансляцию и-РНК на рибосомах клеток, инфи­цированных вирусом, что ведет к прекращению синтеза вирус­ного белка. Исходя из этого универсального механизма дейст­вия интерферон подавляет репродукцию любых вирусов, т. е. не обладает специфичностью, специфичность интерферонаиная. Она носит видовой характер, т. е. человеческий интер­ферон ингибирует репродукцию вирусов в клетках человека, мышиный - мыши и т. д.

Интерферон обладает и противоопухолевым действием, что яв­ляется косвенным свидетельством роли вирусов в возникновении опухолей. Образование интерферона в клетке начинается уже через 2 ч после заражения вирусом, т. е. намного раньше, чем его репродукция, и опережает механизм антителообразования. Интерферон образуют любые клетки, но наиболее активными его продуцентами являются лейкоциты и лимфоциты. В на­стоящее время методами генной инженерии созданы бактерии (кишечные палочки), в геном которых введены гены (или их копии), ответственные за синтез интерферона в лейкоцитах. Полученный таким образом генно-инженерный интерферон широко используется для лечения и пассивной профилактики вирусных инфекций и некоторых видов опухолей. В последние годы разработан широкий круг препаратов - ин­дукторов эндогенного интерферона. Их применение предпочти­тельнее, нежели введение экзогенного интерферона. Таким образом, интерферон является одним из важных факто­ров противовирусного иммунитета, но в отличие от антител или клеток-эффекторов он обеспечивает не белковый, а гене­тический гомеостаз.

Вопрос 42. Вирусные инфекции и методы их диагностики

1. Вирусные инфекции человека

2. Лабораторная диагностика вирусных инфекций

1.В настоящее время вирусные инфекции составляют преобладаю­щую часть инфекционной патологии человека. Самыми распро­страненными среди них остаются острые респираторные (ОРВИ) и другие вирусные инфекции, передаваемые воздушно-капель­ным путем, возбудители которых относятся к абсолютно раз­личным семействам, чаще всего это РНК-содержащие вирусы (вирус гриппа А, В, С, вирус эпидемического паротита, вирусы парагриппа, кори, риновирусы и др.).

Не менее распространены и кишечные вирусные инфекцион­ные заболевания, вызываемые вирусами, также относящимися к различным семействам РНК- и ДНК-содержащих вирусов (энтеровирусы, вирус гепатита А, ротавирусы, калициновирусы и др.).

Широко распространены во всем мире такие вирусные инфек­ционные заболевания, как вирусные гепатиты, особенно гепа­тит В, передаваемый трансмиссивным и половым путем. Их возбудители - вирусы гепатита А, В, С, D, E, G, ТТ - отно­сятся к разным таксономическим группам (пикорнавирусов, гепаднавирусов и др.), имеют разные механизмы передачи, но все обладают тропизмом к клеткам печени.

Одна из самых известных вирусных инфекций - ВИЧ-инфек­ция (часто называемая СПИДом - синдромом приобретенного иммунодефицита, который является ее неизбежным исходом). Вирус иммунодефицита человека (ВИЧ) - возбудитель ВИЧ-инфекции - относится к семейству РНК-вирусов Retroviridae, роду лентивирусов.

Большинство из них - РНК-содержащие, входят в семейства -тога-, флави-, буньявирусов и являются возбудителями энце­фалитов и геморрагических лихорадок. Возбудителями тяжелых форм геморрагических лихорадок (лихорадки Эбола, Марбург-ская лихорадка и др.) являются фило-, аденовирусы. Но транс­миссивный путь заражения при этих инфекционных заболева­ниях не является единственным. Вышеназванные инфекции в основном представляют собой эндемичные заболевания, но тяжелые вспышки некоторых из этих заболеваний (крымской геморрагической лихорадки, лихорадки западного Нила) имели место в Ростовской и Волгоградской областях летом 1999 г.

Кроме инфекционной патологии человека, доказана роль ви­русов и в развитии некоторых опухолей животных и человека (онкогенные, или онковирусы). Среди известных вирусов, обла­дающих онкогенным действием, есть представители как ДНК-содержащих (из семейства паповавирусов, герпесвирусов, аде­новирусов, поксвирусов), так и РНК-содержащих (из семейства ретрорвирусов, род пикорновирусов) вирусов.

2. Для лабораторной диагностики вирусных инфекций используют­ся различные методы.

Вирусологическое исследование (световая микроскопия) позволяет обнаружить характерные вирусные включения, а электронная микроскопия - сами вирионы и по особенностям их строения диагностировать соответствующую инфекцию (например, ро-тавирусную).

Вирусологическое исследование направлено на выделение вируса и его идентификацию. Для выделения вирусов используют за­ражение лабораторных животных, куриных эмбрионов или культуры тканей.

Первичную идентификацию выделенного вируса до уровня семей­ства можно провести с помощью:

Определения типа нуклеиновой кислоты (проба с бромдезоксиу-ридоном);

Особенностей ее строения (электронная микроскопия);

Размера вириона (фильтрование через мембранные фильтры с порами диаметром 50 и 100 нм);

Наличия суперкапсидной оболочки (проба с эфиром);

Гемагглютининов (реакция гемагглютинации);

Типа симметрии нуклеокапсида (электронная микроскопия).

Результаты оцениваются по заражению культуры ткани про­бой, подвергнутой соответствующей обработке, и с последую­щим учетом результатов заражения методом цветной пробы фильтрования. Существенное значение для идентификации вирусов (до рода, вида, внутри вида) имеет также изучение их антигенного строения, которое проводится в реакции вирусо-нейтрализации с соответствующими иммунными сыворотками. Сущность этой реакции состоит в том, что после обработки гомологичными антителами вирус утрачивает свою биологиче­скую активность (нейтрализуется) и клетка хозяина развивает­ся так же, как и неинфицированная вирусом. Об этом судят по отсутствию цитопатического действия, цветной пробе, резуль­татам реакции торможения гемагглютинации (РТГА), отсутст­вию изменений при заражении куриных эмбрионов, выживае­мости чувствительных животных.

Вирусологическое исследование - это "золотой стандарт" виру­сологии и должно проводиться в специализированной вирусо­логической лаборатории. В настоящее время оно используется

практически только в условиях возникновения эпидемической вспышки того или иного вирусного инфекционного заболевания.

Для диагностики вирусных инфекций широкое применение нашли методы иммунодиагностики (серодиагностики и имму-ноиндикации). Они реализуются в самых разнообразных реакци­ях иммунитета :

Радиоизотопный иммунный анализ (РИА);

Иммуноферментный анализ (ИФА);

Реакция иммунофлюоресценции (РИФ);

Реакция связывания комплемента (РСК);

Реакция пассивной гемагглютинации (РПГА);

Реакции торможения гемагглютинации (РТГА) и др.

При использовании методов серодиагностики обязательным яв­ляется исследование парных сывороток. При этом 4-кратное на­растание титра антител во второй сыворотке в большинстве случаев служит показателем протекающей или свежеперене-сенной инфекции. При исследовании одной сыворотки, взятой в острой стадии болезни, диагностическое значение имеет об­наружение антител класса IgM, свидетельствующее об острой инфекции.

Большим достижением современной вирусологии является внедрение в практику диагностики вирусных инфекций моле-кулярно-генетических методов (ДНК-зондирование, полимераз-ной цепной реакции - ПЦР). В первую очередь с их помощью выявляют персистирующие^ вирусы, находящиеся в клиниче­ском материале, с трудом обнаруживаемые или не обнаружи­ваемые другими методами.

Вопрос 43. Профилактика и лечение вирусных инфекций

1. Методы профилактики вирусных инфекций

2. Противовирусные химиотерапевтические средства

1. Лля активной искусственной профилактики вирусных инфекций . в том числе плановой, широко используются живые вирусные вак­цины. Они стимулируют резистентность в месте входных ворот инфекции, образование антител и клеток-эффекторов, а также синтез интерферона. Основные виды живых вирусных вакцин:

Гриппозная, коревая;

Полиомиелитная (Сейбина-Смородинцева-Чумакова);

Паротитная, против коревой краснухи;

Антирабическая, против желтой лихорадки;

Генно-инженерная вакцина против гепатита В - Энджерикс В. Цля профилактики вирусных инФекиий используются и убитые вакцины:

Против клещевого энцефалита;

Омской геморрагической лихорадки;

Полиомиелита (Солка);

Гепатита А (Харвикс 1440);

Антирабическая (ХДСВ, Пастер Мерье);

А также химические - гриппозные.

Для пассивной профилактики и и ммунотерапии предложены сле­дующие антительные препараты:

Противогриппозный гамма-глобулин;

Антирабический гамма-глобулин;

Противокоревой гамма-глобулин для детей до 2 лет (в очагах) и для ослабленных детей старшего возраста;

Противогриппозная сыворотка с сульфаниламидами.

Универсальным средством пассивной профилактики вирусных инфекций являются интерферон и индукторы эндогенного ин­терферона.

2. Большинство известных химиотерапевтических препаратов не обладают противовирусной активностью, так как механизм действия большинства из них основан на подавлении микроб­ного метаболизма, а у вирусов собственные метаболические системы отсутствуют.

Антибиотики и сульфаниламиды при вирусных инфекциях ис­пользуют только с целью профилактики бактериальных ослож­нений. Тем не менее в настоящее время разрабатываются и применяются химиотерапевтические средства, обладающие противовирусной активностью.

Первая группа - аномальные нуклеозиды. По строению они близки к нуклеотидам вирусных нуклеиновых кислот, но, включенные в состав нуклеиновой кислоты, они не обеспечи­вают ее нормальное функционирование. К таким препаратам относятся азидотимидин - препарат, активный в отношении вируса иммунодефицита человека (ВИЧ-инфекция). Недостаток этих препаратов - в высокой токсичности для клеток мак­роорганизма.

Вторая группа препаратов нарушает процессы абсорбции виру­сов на клетках. Они менее токсичны, обладают высокой изби­рательностью и весьма перспективны. Это тиосемикарбозон и его производные, ацикловир (зовиракс) - герпетическая ин­фекция, ремантадин и его производные - грипп А и др.

Универсальным средством терапии, так же как и профилакти­ки, вирусных инфекций является интерферон.

Вопрос 44. Бактериофаги

1. Понятие о бактериофагах

2. Классификация бактериофагов

3. Диагностическая и терапевтическая роль фагов

1. Бактериофаги (фаги) - это вирусы, поражающие бактериальные клетки (в качестве клетки-хозяина). Вирионы фагов состоят из головки, содержащей нуклеиновую кислоту вируса, и более или менее выраженного отростка. Нуклеокапсид головки фага имеет кубический тип симметрии, а отросток - спиральный тип, т. е. бактериофаги имеют смешанный тип симметрии нук-леокапсида.

Большинство фагов содержат кольцевую двунитчатую ДНК, и лишь некоторые - РНК или однонитчатую ДНК. Фаги, как и другие вирусы, обладают антигенными свойствами и содержат группоспецифические (по ним делятся на серотипы) и типо-специфические антигены. Сыворотки, содержащие антитела к этим антигенам (антифаговые сыворотки), нейтрализуют лити-ческую активность фагов. Взаимодействие бактериофага с клеткой происходит в соответствии с основными типами взаи­модействия, характерными для всех вирусов, - продуктивная (литическая), абортивная вирусная и латентная (лизогения, вирогения) инфекция, а также вирус-индуцированная транс­формация.

По характеру взаимодействия фага с клеткой все бактериофа­ги делятся:

На вирулентные (литические), вызывающие продуктивную ин­фекцию и лизис бактериальной клетки;

умеренные, вызывающие латентную инфекцию и ассоциацию генома вируса с бактериальной хромосомой. Умеренные фаги, в отличие от вирулентности, не вызывают ги­бели бактериальных клеток и при взаимодействии с ней пере­ходят в неинфекционную форму фага, называемую профагом. Профаг - геном фага, ассоциированный с бактериальной хромо­сомой. Профаг, ставший частью хромосомы клетки, при ее размножении реплицируется синхронно с геномом бактерии, не вызывая ее лизиса, и передается по наследству от клетки к клетке в неограниченном числе поколений. Бактериальные клетки, содержащие в своей хромосоме профаг, называются лизогенными. Профаг в лизогенных бактериях са­мопроизвольно или под влиянием различных индуцированных агентов может переходить в вегетативный фаг. В результате та­кого превращения бактериальная клетка лизируется и продуци­рует новые фаговые частицы. В ходе лизогенизации бактериаль­ные клетки могут дополнительно приобретать новые признаки, детерминируемые геномом вируса. Такое явление - изменение свойств микроорганизмов под влиянием профага - называется фаговой, или лизогенной, конверсией (проявление вирус-инду-цироанной трансформации).

Умеренные фаги, неспособные ни при каких условиях перехо­дить из профага в вегетативный фаг (образовывать зрелые фа­говые частицы), называются дефектными, чаще это происходит в результате нарушения стадии сборки вирусных частиц. Неко­торые умеренные фаги называются трансдуцирующими, по­скольку с их помощью осуществляется один из механизмов ге­нетической рекомбинации у бактерий - трансдукции. Такие фаги могут использоваться, в частности, в генной инженерии в качестве векторов для получения рекомбинантных ДНК и/или приготовлении рекомбинантных (генно-инженерных) вакцин.

2. Специфичность фагов послужила основанием для их наименова­ния по видовым и родовым названиям чувствительных к ним бак­терий. Так, например, фаги, лизирующие стрептококки, назы­ваются стрептококковыми, лизирующие холерные вибрионы -холерные, стафилококки - стафилококковыми. По признаку специфичности выделяют поливалентные бакте­риофаги, лизирующие культуры одного семейства или рода бактерий, моновалентные (монофаги) - лизирующие культуры только одного вида бактерий, а также отличающиеся наиболее высокой специфичностью - типовые бактериофаги, способные вызывать лизис только определенных типов (вариантов) бакте­риальной культуры внутри вида бактерий.

Наборы таких типоспецифических фагов используются для дифференцировки бактерий внутри вида - это метод фаготи-пирования бактерий. С помощью этого метода можно устано­вить источник и пути передачи инфекционного заболевания, т. е. провести его эпидемиологический анализ, поскольку он позволяет сравнивать фаготипы (фаговары) чистых культур бактерий, выделенных в ходе бактериологического исследова­ния от больного и от окружающих его лиц - возможных бак­терионосителей.

36. Белки, в отличие от нуклеиновых кислот,

1) участвуют в образовании плазматической мембраны

2) входят в состав хромосом

3) участвуют в гуморальной регуляции

4) осуществляют транспортную функцию

5) выполняют защитную функцию

6) переносят наследственную информацию из ядра к рибосоме

37. В нервной системе человека вставочные нейроны передают нервные импульсы

1) с двигательного нейрона в головной мозг

2) от рабочего органа в спинной мозг

3) от спинного мозга в головной мозг

4) от чувствительных нейронов к рабочим органам

5) от чувствительных нейронов к двигательным нейронам

6) из головного мозга к двигательным нейронам

38. Каковы существенные признаки экосистемы?

1) высокая численность видов консументов III порядка

2) наличие круговорота веществ и потока энергии

3) наличие общей популяции разных видов

4) неравномерное распределение особей одного вида

5) наличие производителей, потребителей и разрушителей

6) взаимосвязь абиотических и биотических компонентов

При выполнении заданий 39 – 43 к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца. Укажите правильные соответствия стрелками.

39. Установите соответствие между признаком животного и классом, для которого он характерен.

ПРИЗНАК ЖИВОТНОГО

КЛАСС

А) дыхание лёгочное и кожное

1) Земноводные

Б) оплодотворение наружное

2) Пресмыкающиеся

В) кожа сухая, без желёз

Г) постэмбриональное развитие с превращением

Д) размножение и развитие происходят на суше

Е) оплодотворённые яйца с большим

40. Установите соответствие между железой в организме человека и её типом.

ЖЕЛЕЗА

ТИП ЖЕЛЕЗЫ

А) молочная

1) внутренней секреции

Б) щитовидная

2) внешней секреции

В) печень

Г) потовая

Д) гипофиз

Е) надпочечники

41. Установите соответствие между характеристикой энергетического обмена и его этапом.

ХАРАКТЕРИСТИКА

ЭТАП ЭНЕРГЕТИЧЕСКОГО ОБМЕНА

А) происходит в анаэробных условиях

1) гликолиз

Б) происходит в митохондриях

2) кислородное окисление

В) образуется молочная кислота

Г) образуется пировиноградная кислота

Д) синтезируется 36 молекул АТФ

42. Установите соответствие между характеристикой естественного отбора и его формой.

ХАРАКТЕРИСТИКА

ФОРМА ОТБОРА

А) сохраняет среднее значение признака

1) движущая

Б) способствует приспособлению к изменившимся условиям среды

2) стабилизирующая

В) сохраняет особи с признаком, отклоняющимся от его среднего значения

Г) способствует увеличению многообразия организмов

Д) способствует сохранению видовых признаков

43. Установите соответствие между природной и искусственной экосистемами и их признаками:

ПРИЗНАКИ ЭКОСИТЕМЫ

ВИДЫ ЭКОСИСТЕМ

А) преобладание монокультур, популяций немногих видов

1) природная экосистема

Б) действует естественный отбор

2) агроценоз

В) упрощённость взаимоотношений между видами

Г) разнообразие видового состава

Д) разомкнутый круговорот веществ

Е) сложная сеть взаимосвязей между организмами

Ж) преобладание искусственного отбора

З) устойчивость, способность к длительному существованию

44. Соотнесите признаки растений с отделами, в которых они находятся:

ПРИЗНАКИ

ОТДЕЛЫ

А) гаметофит представлен заростком

Б) спорофит имеет множественные листья - вайи

2) папоротники

В) органы прикрепления отсутствуют или ризоиды

Г) спорофит - коробочка

Д) из спор прорастают зелёные нити - (протонемы)

Е) органы прикрепления - корневища

45. Соотнесите признаки отрядов насекомых:

ПРИЗНАКИ

ОТДЕЛЫ

А) личинка и имаго питаются по-разному

1) чешуекрылые

Б) ротовой аппарат грызущего типа

2) прямокрылые

В) передние крылья жесткие, задние - тонкие

Г) ротовой аппарат превращён в хоботок

Д) развитие прямое

Е) в стадии развития присутствует куколка

46. Установите соответствие между характером приспособления и направлением органической эволюции:

ПРИСПОСОБЛЕНИЯ

НАПРАВЛЕНИЯ ЭВОЛЮЦИИ

А) покровительственная окраска

1) ароморфоз

Б) редукция пальцев на ногах копытных

2) идиоадаптация

В) половое размножение

Г) шерсть млекопитающих

Д) плотная кутикула на листьях растений

Е) сходство некоторых бабочек с листьями растений

При выполнении заданий 47 – 50 запишите в правильной последовательности цифры, которыми обозначены биологические процессы, явления, практические действия.

47. Установите последовательность процессов, происходящих в ходе мейоза.

1) расположение пар гомологичных хромосом в экваториальной плоскости

2) конъюгация, кроссинговер гомологичных хромосом

3) расхождение сестринских хромосом

4) образование четырёх гаплоидных ядер

5) расхождение гомологичных хромосом

48. Постройте последовательность реакций трансляции:

1) присоединение аминокислоты к т-РНК

2) начало синтеза полипептидной цепи на рибосоме

3) присоединение и-РНК к рибосоме

4) окончание синтеза белка

5) удлинение полипептидной цепи

49. Расположите в правильной последовательности этапы создания генетически измененных организмов:

1) введение вектора гена в бактериальную клетку

2) отбор клеток с дополнительным геном

3) создание условий для наследования и экспрессии гена

4) объединение созданного гена с вектором

5) получение гена, кодирующего интересующий признак

6) практическое использование трансформированных клеток для продуцирования белка

50. Расставьте цифры в последовательности, соответствующей порядку расположения отделов пищеварительного тракта

2) желудок

3)пищевод

4) толстая кишка

5) двенадцатиперстная кишка

6) ротовая полость

7) тонкая кишка

9) слепая кишка

  1. Р п. Шербакуль, 2014 г. Требования к организации и проведению школьного этапа всероссийской олимпиады школьников по общеобразовательным предметам на территории Шербакульского муниципального района в 2014-2015 учебном году

    Документ

    Всероссийской Олимпиады школьников по общеобразовательным предметам общеобразовательному предметам : 6.1 Победителями школьного... олимпиады по биологии проводится в один теоретический тур по ... использовании «открытых» тестов необходимо стремиться к...

  2. Программы вступительных испытаний (бакалавриат) вступительные испытания по общеобразовательным предметам. Критерии оценки (для испытаний, проводимых вузом самостоятельно) Биология (

    Литература

    ... по общеобразовательным предметам . КРИТЕРИИ ОЦЕНКИ (для испытаний, проводимых ВУЗом самостоятельно) Биология (программа, критерий, образец теста ...) Литература (программа, критерий, образец теста ) ...

1) Биосинтез белка, в отличие от фотосинтеза, происходит
А) в хлоропластах
Б) на рибосомах
В) с использованием энергии солнечного света
Г) в реакциях матричного типа
Д) в лизосомах
Е) с участием рибонкулеиновых кислот

Ответ

1а. Установите последовательность процессов при биосинтезе белка в клетке
А) образование пептидной связи между аминокислотами
Б) взаимодействие кодона иРНК и антикодона тРНК
В) выход тРНК из рибосомы
Г) соединение иРНК с рибосомой
Д) выход иРНК из ядра в цитоплазму
Е) синтез иРНК

Ответ

2А) Установите соответствие между характеристикой и процессом жизнедеятельности растения, к которому её относят: 1-фотосинтез, 2-дыхание
А) синтезируется глюкоза
Б) окисляются органические вещества
В) выделяется кислород
Г) образуется углекислый газ
Д) происходит в митохондриях
Е) сопровождается поглощением энергии

Ответ

А1 Б2 В1 Г2 Д2 Е1

2Б. Установите соответствие между процессом и видом обмена веществ в клетке: 1-фотосинтез, 2-энергетический обмен
А) образование пировиноградной кислоты (ПВК)
Б) происходит в митохондриях
В) фотолиз молекул воды
Г) синтез молекул АТФ за счет энергии света
Д) происходит в хлоропластах
Е) синтез 38 молекул АТФ при расщеплении молекулы глюкозы

Ответ

А2 Б2 В1 Г1 Д1 Е2

2В. Установите соответствие между признаком жизнедеятельности растений и процессом дыхания или фотосинтеза: 1-дыхание, 2-фотосинтез
А) осуществляется в клетках с хлоропластами
Б) происходит во всех клетках
В) поглощается кислород
Г) усваивается углекислый газ
Д) образуются органические вещества из неорганических на свету
Е) окисляются органические вещества

Ответ

А2 Б1 В1 Г2 Д2 Е1

3. Белки в организме человека и животных
А) служат основным строительным материалом
Б) расщепляются в кишечнике до глицерина и жирных кислот
В) образуются из аминокислот
Г) в печени превращаются в гликоген
Д) откладываются в запас
Е) в качестве ферментов ускоряют химические реакции

Ответ

4. Установите соответствие между процессом и этапом энергетического обмена, в котором он происходит: 1-бескислородный, 2-кислородный
А) расщепление глюкозы
Б) синтез 36 молекул АТФ
В) образование молочной кислоты
Г) полное окисление до СО2 и Н2 О
Д) образование ПВК, НАД-2Н

Ответ

А1 Б2 В1 Г2 Д1

5. Белки, в отличие от нуклеиновых кислот,
А) участвуют в образовании плазматической мембраны
Б) входят в состав хромосом
В) являются ускорителями химических реакций
Г) осуществляют транспортную функцию
Д) выполняют защитную функцию
Е) переносят наследственную информацию из ядра к рибосоме

Ответ

6. Какие особенности строения и свойств воды определяют её функции в клетке?
А) способность образовывать водородные связи
Б) наличие в молекулах макроэргических связей
В) полярность молекулы
Г) высокая теплоёмкость
Д) способность образовывать ионные связи
Е) способность выделять энергию при расщеплении

Ответ

8) Установите соответствие между характеристикой энергетического обмена и его этапом: 1-гликолиз, 2-кислородное окисление
А) происходит в анаэробных условиях
Б) происходит в митохондриях
В) образуется молочная кислота
Г) образуется пировиноградная кислота
Д) синтезируется 36 молекул АТФ

Ответ

А1 Б2 В1 Г1 Д2

9. В результате реакций матричного типа синтезируются молекулы
А) полисахаридов
Б) ДНК
В) моносахаридов
Г) иРНК
Д) липидов
Е) белка

Ответ

9а. Установите соответствие между характеристикой углевода и его группой: 1-моносахарид, 2-полисахарид
А) является биополимером
Б) обладает гидрофобностью
В) проявляет гидрофильность
Г) служит запасным питательным веществом в клетках животных
Д) образуется в результате фотосинтеза
Е) окисляется при гликолизе

Ответ

А2 Б2 В1 Г2 Д1 Е1

10. Каково значение фотосинтеза в природе?
А) обеспечивает организмы органическими веществами
Б) обогащает почву минеральными веществами
В) обеспечивает организмы кислородом
Г) обогащает атмосферу парами воды
Д) обеспечивает все живое на Земле энергией
Е) обогащает атмосферу молекулярным азотом

Ответ

11. Чем молекула ДНК отличается от молекулы иРНК?
А) способна самоудваиваться
Б) не может самоудваиваться
В) участвует в реакциях матричного типа
Г) не может служить матрицей для синтеза других молекул
Д) состоит из двух полинуклеотидных нитей, закрученных в спираль
Е) является составной частью хромосом

Ответ

12. Какие вещества относят к биополимерам?
А) крахмал
Б) глицерин
В) глюкозу
Г) белки
Д) ДНК
Е) фруктозу

Ответ

13. Установите последовательность этапов окисления молекул крахмала в ходе энергетического обмена
А) образование молекул ПВК (пировиноградной кислоты)
Б) расщепление молекул крахмала до дисахаридов
В) образование углекислого газа и воды
Г) образование молекул глюкозы

Ответ

14. Установите соответствие между характеристикой и функцией белка, которую он выполняет: 1-регуляторная, 2-структурная
А) входит в состав центриолей
Б) образует рибосомы
В) представляет собой гормон
Г) формирует мембраны клеток
Д) изменяет активность генов

Ответ

А2 Б2 В1 Г2 Д1

15. Темновая фаза фотосинтеза характеризуется
А) протеканием процессов на внутренних мембранах хлоропластов
Б) синтезом глюкозы
В) фиксацией углекислого газа
Г) протеканием процессов в строме хлоропластов
Д) наличием фотолиза воды
Е) образованием АТФ

Ответ

16. Какие функции выполняют липиды в организме?
А) энергетическую
Б) двигательную
В) информационную
Г) строительную
Д) защитную
Е) транспортную

Ответ

17. Чем пластический обмен отличается от энергетического?
А) энергия запасается в молекулах АТФ
Б) запасенная в молекулах АТФ энергия расходуется
В) органические вещества синтезируются
Г) происходит расщепление органических веществ
Д) конечные продукты обмена – углекислый газ и вода
Е) в результате реакций обмена образуются белки

Ответ

18. Установите соответствие между особенностью обмена веществ и группой организмов, для которых она характерна: 1-автотрофы, 2-гетеротрофы
А) выделение кислорода в атмосферу
Б) использование энергии, заключенной в пище, для синтеза АТФ
В) использование готовых органических веществ
Г) синтез органических веществ из неорганических
Д) использование углекислого газа для питания

Ответ

А1 Б2 В2 Г1 Д1

19. Установите соответствие между группой организмов и процессом превращения веществ, который для нее характерен: 1-фотосинтез, 2-хемосинтез
А) папоротникообразные
Б) железобактерии
В) бурые водоросли
Г) цианобактерии
Д) зеленые водоросли
Е) нитрифицирующие бактерии

Ответ

А1 Б2 В1 Г1 Д1 Е2

20. Какие углеводы относят к моносахаридам?
А) рибоза
Б) глюкоза
В) целлюлоза
Г) фруктоза
Д) крахмал
Е) гликоген

Ответ

21. Установите соответствие между характеристикой автотрофного питания и его типом: 1- фотосинтез, 2- хемосинтез
А) используется энергия окисления неорганических веществ
Б) источник энергии – солнечный свет
В) осуществляется в клетках растений
Г) происходит в клетках цианобактерий
Д) выделяется в атмосферу кислород
Е) используется кислород для окисления

Ответ

А2 Б1 В1 Г1 Д1 Е2

22. Какие функции выполняют в клетке молекулы углеводов и липидов?
А) информационную
Б) каталитическую
В) строительную
Г) энергетическую
Д) запасающую
Е) двигательную

Нуклеопротеины – одна из самых важных групп белков, состоящая из простых белков связанных с нуклеиновыми кислотами. Эти белки играют первостепенную роль в хранении и передаче генетической информации и биосинтезе белка и содержаться в основном в ядрах клеток. Дезоксирибонуклеопротеины содержат дезоксирибонуклеиновую кислоту (ДНК). Рибонуклеопротеины содержат рибонуклеиновую кислоту (РНК)

Фосфопротеины – эти белки содержат органически связанный, лабильный фосфат, абсолютно необходимый для выполнения клеткой ряда биологических функций. Кроме того, они являются ценным источником энергетического и пластического материала в процессе роста и развития зародышей и молодого растущего организма. Наиболее изучены фосфопротеины – казеин молока, вителлин яичного желтка, ихтулин икры рыб. Металлопротеины наряду с белком содержат ионы какого-либо металла или нескольких металлов. Металлопротеины выполняют различные функции. Например, белок трансферрин (содержит железо) служит физиологическим переносчиком железа в организме. Другие металлопротеины являются биологическими катализаторами-ферментами – амилазы (содержат Са 2+) гидролизуют крахмал, карбоангидроза (Zn 2+) расщепляет угольную кислоту, аскорбинотоксидаза (Cu 2+) разрушает витамин С и т.д.

2. НУКЛЕИНОВЫЕ КИСЛОТЫ

Нуклеиновые кислоты были открыты в 1868г. швейцарским врачом Ф. Мишером. Биологическая функция этого вещества оставалась неизвестной еще в течение почти столетия, и только в 40-х годах прошлого века Эвери, Маклеод и Маккарти установили, что нуклеиновые кислоты, отвечают за хранение, репликацию (воспроизведение), транскрипцию (передачу) и трансляцию (воспроизведение на белок) генетической (наследственной) информации. Короче, именно нуклеиновые кислоты определяют вид, форму, химический состав и функции живой клетки и всего организма в целом.

В 1953 г. Уотсон и Крик сообщили о расшифровке молекулярной структуры ДНК. В каждом живом организме присутствуют два типа нуклеиновых кислот: рибонуклеиновая кислота (РНК) и дезоксирибонуклеиновая кислота (ДНК). В то же время вирусы содержат только один какой-нибудь тип нуклеиновых кислот: либо РНК, либо ДНК.

Нуклеиновые кислоты – это высокомолекулярные соединения, размер которых сильно варьирует. Молярная масса транспортной РНК составляет 25000, тогда как отдельные молекулы ДНК обладают массой от 1 000 000 до 1 000 000 000.

Количественное содержание ДНК в клетках одного и того же организма постоянно и исчисляется несколькими пикограммами, однако в клетках разных видов живых организмов имеются существенные количественные различия в содержании ДНК. ДНК преимущественно сосредоточено в ядре, митохондриях и хлоропластах. РНК большей частью содержится в цитоплазме клеток. Содержание РНК, как правило, в 5-10 раз больше, чем ДНК. Соотношение РНК/ДНК в клетках тем выше, чем интенсивнее в них синтез белка.

Нуклеиновые кислоты обладают сильно выраженными кислотными свойствами и при физиологических значениях рН несут высокий отрицательный заряд. В связи с этим в клетках организмов они легко взаимодействуют с различными катионами и прежде всего с основными белками, образуя нуклеопротеины.

    1. Состав нуклеиновых кислот

Нуклеиновые кислоты при полном их гидролизе распадаются на три типа веществ – азотистые основания (пуриновые и пиримидиновые основания), сахара (пентозы) и фосфорную кислоту.

Пентозы нуклеиновых кислот представлены D-рибозой или 2-D-дезоксирибозой. Оба эти сахара содержатся в составе нуклеиновых кислот в фуранозной форме и имеют -конфигурацию:

Нуклеиновая кислота называется рибонуклеиновой (РНК), если в ее состав входит рибоза, или дезоксирибонуклеиновой (ДНК), если в ее состав входит дезоксирибоза. Недавно установлено, что рибоза и дезоксирибоза не являются единственными углеводами, входящими в состав нуклеиновых кислот: в ряде фаговых ДНК и РНК некоторых видов раковых клеток найдена глюкоза.

Азотистые основания, которые обычно встречаются в нуклеиновых кислотах – это производные пурина аденин (А) и гуанин (G )-и производные пиримидина – цитозин (С), тимин (Т) и урацил (U ). Сами пурин и пиримидин в состав нуклеиновых кислот не входят.

Строение основных азотистых оснований-компонентов нуклеиновых кислот:

Цитозин, аденин, гуанин содержатся в нуклеиновых кислотах обоих типов, урацил входит только в состав РНК, а тимин в ДНК.

Для гуанина, цитозина, тимина и урацила известна кето-енольная таутомерия, однако кетоструктуры гораздо более стабильны и доминируют при физиологических условиях.

Таутомерия

В нуклеиновых кислотах все оксосодержащие азотистые основания присутствуют в кетоформе.

В составе ДНК и РНК встречаются так называемые необычные или «минорные» азотистые основания. К ним относятся, например, 5-метилцитозин, 4-тиоурацил, дигидроурацил и др.

5- метилцитозин - тиоурацил дигидроурацил

(в ДНК) (в тРНК) (в тРНК)

Рассмотренные пуриновые и пиримидиновые основания, а так же некоторые другие производные пурина и пиримидина, которые не входят в состав нуклеиновых кислот, часто содержатся в растениях в значительном количестве в свободном состоянии. Наиболее часто в свободном состоянии в растениях встречаются гипоксантин (6-гидроксиоксипурин), найденный в семенах горчицы и люпина. Ксантин (2,6-дигидроксиоксипурин) и аллонтоин очень широко распространены в растениях. В форме этих оснований, как и в форме амидов аминокислот, происходит запасание и транспорт азота в растениях.

гипоксантин ксантин аллантоин

Пурины и пиримидины поглощают электромагнитную энергию в ультрафиолетовом (УФ) диапазоне, причем каждое соединение имеет характеристический спектр поглощения, однако для всех этих соединений максимум поглощения наблюдается вблизи 260 нм. Нуклеиновые кислоты так же поглощают в УФ-области. На этом свойстве основаны методы количественного определения нуклеиновых кислот.

В процессе обмена веществ у животных и растений пуриновые основания образуют такие продукты, как мочевая кислота, кофеин, теобромин, последние используются как лекарства.

    1. Нуклеозиды

Азотистое основание с присоединенным к нему углеводным остатком, называют нуклеозидом. В нуклеозидах ковалентная связь образована С 1 -атом сахара и N 1 - атомом пиримидина или N 9 - атомом пурина, такая связь называется гликозидной. Что бы избежать путаницы в нумерации, атомы углеводной части отличают штрихом. Для наиболее распространенных нуклеозидов приняты тривиальные названия: аденозин, гуанозин, уридин и цитидин. Дезоксирибонуклеозиды называются дезоксиаденозин, дезоксигуанозин, дезоксицитидин и тимидин.

Например:

Пиримидиновый Пуриновый

рибонуклеозид дезоксирибонуклеозид

Нуклеозиды являются фрагментом структуры нуклеотидов; однако многие нуклеозиды встречаются в свободном состоянии. Некоторые из них обладают лечебными свойствами. Различные микроорганизмы выделяют арабинозилцитозин и арабинозиладенин, в состав которых входит -D-арабиноза вместо рибозы. Эти вещества используются в качестве мощных антивирусных и антигрибковых агентов и против некоторых видов рака. Механизм действия ara -А и ara -С основан на ингибирование биосинтеза ДНК.

    1. Нуклеотиды

Нуклеотиды – это фосфорные эфиры нуклеозидов. В образовании связи участвует 5 1 -углеродный атом пентозы. В зависимости от строения пентозы все нуклеотиды можно разделить на рибонуклеотиды и дезоксирибонуклеотиды.

В зависимости от числа имеющихся остатков фосфорной кислоты различают нуклеозидмонофосфаты, нуклеозиддифосфаты и нуклеозидтрифосфаты. Все эти три вида нуклеотидов постоянно присутствуют в клетках.

Рисунок 3 – моно-, ди- и трифосфонуклеотиды (5 1) аденозина.

Названия отдельных нуклеотидов часто обозначают сокращенно большими первыми буквами названий соответствующих оснований. Ниже приведены нуклеотиды, входящие в состав нуклеиновых кислот, и даны их условные сокращенные обозначения.

Таблица 2 – Сокращенные названия отдельных нуклеотидов

Нуклеотиды – это сильные кислоты, так как остаток фосфорной кислоты, входящий в их состав, сильно ионизирован.

Главная функция нуклеотидов в клетке состоит в том, что они являются составными частями нуклеиновых кислот.

Все нуклеозиддифосфаты и нуклеозидтрифосфаты содержат высокоэнергетические связи (обозначены значком «»). При гидролизе этой связи освобождается от 30 до 50 кДж/моль энергии, в то время как при гидролизе обычной сложноэфирной фосфатной связи освобождается энергия равная 8-12 кДж/моль.

Под влиянием соответствующих ферментов фосфатные группы содержащие высокоэнергетические связи, могут быть перенесены на другие вещества. Таким образом энергия, накопившаяся в высокоэнергетических соединениях, может быть использована далее в обмене веществ. Например: АДФ и АТФ принимают участие в биосинтезе белка. Уридинтрифосфат (U ТФ) и уридиндифосфат (U ДФ) необходимы для действия ферментов, катализирующих превращения и синтез сахаров (СДФ и СТФ) цитидиндифосфат и цитидинтрифосфат принимают участие в биосинтезе фосфолипидов.

Циклические нуклеотиды были выделены в 1959г. Сазерлендом (лауреат Нобелевской премии 1971г.) при изучении механизма действия некоторых гормонов при регулировании метаболизма углеводов. В циклических нуклеотидах фосфорная кислота связывает два атома кислорода пентозного остатка в одном и том же нуклеотиде. Известны три циклических нуклеотида – циклический аденозинмонофосфат (с АМФ), циклический гуанозинмонофосфат (с G МФ) и циклический цитозинмонофосфат (с СМФ).

Эти нуклеотиды образуются из соответствующих нуклеозидтри-фосфатов под действием ферментов аденилатциклазы и гуанилатциклазы. В биологических процессах они выступают в качестве промежуточного посредственника регуляторного действия гормонов. кислоты . Структура белков , функции белков в клетке, аминокислоты. Нуклеиновые кислоты . Тип урока - изучение нового материала. ...

  • Белки , аминокислоты. Нуклеиновые кислоты АТФ, АДФ, самоудвоение ДНК, типы РНК

    Конспект урока >> Биология

    Белки , аминокислоты. Нуклеиновые кислоты . АТФ, АДФ, самоудвоение... (рибоза) – три остатка фосфорной кислоты , соединённых макроэргической связью. Относится к... сопровождается отщеплением 1-2 остатков фосфорной кислоты , что приводит к выделению от...

  • Белки , липиды и углеводы вирусов

    Реферат >> Химия

    Синтезируются специфические вирусные белки и осуществляется процесс самосборки этих белков с нуклеиновой кислотой в новые вирусные... или при взаимо­действии с нуклеиновой

  • Нуклеопротеины комплексы нуклеиновых кислот с белками. К нуклеопротеинам относятся устойчивые комплексы нуклеиновых кислот с белками, длительное время существующие в клетке в составе органелл или структурных элементов клетки в отличие от разнообразных короткоживущих промежуточных комплексов белок-нуклеиновая кислота (комплексы нуклеиновых кислот с ферментами синтетазами и гидролазами при синтезе и деградации нуклеиновых кислот, комплексы нуклеиновых кислот с регуляторными белками и т. п.). В зависимости от типа входящих в состав нуклеопротеиновых комплексов нуклеиновых кислот различают рибонуклеопротеины и дезоксирибонуклеопротеины. Нуклеопротеины составляют существенную часть рибосом, хроматина, вирусов. В рибосомах рибонуклеиновая кислота (РНК) связывается со специфическими рибосомальными белками. Вирусы являются практически чистыми рибо- и дезоксирибонуклеопротеинами. В хроматине нуклеиновая кислота представлена дезоксирибонуклеиновой кислотой, связанной с разнообразными белками, среди которых можно выделить две основные группы – гистоны и негистоновые белки.


    Устойчивость нуклеопротеиновых комплексов обеспечивается нековалентным взаимодействием. У различных нуклеопротеинов в обеспечение стабильности комплекса вносят вклад различные типы взаимодействий, при этом нуклеиново-белковые взаимодействия могут быть специфичными и неспецифичными. В случае специфичного взаимодействия определённый участок белка связан со специфичной (комплементарной участку) нуклеотидной последовательностью, в этом случае вклад водородных связей, образующихся между нуклеотидными и аминокислотными остатками благодаря пространственному взаимному соответствию фрагментов, максимален. В случае неспецифичного взаимодействия основной вклад в стабильность комплекса вносит электростатическое взаимодействие отрицательно заряженных фосфатных групп полианиона нуклеиновой кислоты с положительно заряженными аминокислотными остатками белка.


    Примером специфичного взаимодействия могут служить нуклеопротеидные комплексы рРНК субъединицы рибосом; неспецифичное электростатическое взаимодействие характерно для хромосомных комплексов ДНК хроматина и комплексов ДНК- протамины головок сперматозоидов некоторых животных. Нуклеопротеиновый комплекс субчастица 50S рибосом бактерий. Коричневым показана рРНК, синим белки.


    Наличие отрицательно заряженного фосфата в каждом нуклеотиде делает НК полианионами. Поэтому с белками они образуют солеподобные комплексы. Схематично это можно представить так: Начальный этап упаковки ДНК осуществляют гистоны, более высокие уровни обеспечиваются другими белками. В начале молекула ДНК обвивается вокруг гистонов, образуя нуклеосомы. Сформированная таким образом нуклеосомная нить напоминает бусы, которые складываются в суперспираль (хроматиновая фибрилла) и суперсуперспираль (хромонемма интерфазы). Благодаря гистонам и другим белкам в конечном итоге размеры ДНК уменьшаются в тысячи раз: длина ДНК достигает 6-9 см (10 -1), а размеры хромосом – всего несколько микрометров (10 -6). Этапы организации хроматина


    В каждом живом организме присутствуют 2 типа нуклеиновых кислот: рибонуклеиновая кислота (РНК) и дезоксирибонуклеиновая кислота (ДНК). Молекулярная масса самой "маленькой" из известных нуклеиновых кислот - транспортной РНК (тРНК) составляет примерно 25 кД. ДНК - наиболее крупные полимерные молекулы; их молекулярная масса варьирует от до кД. ДНК и РНК состоят из мономерных единиц - нуклеотидов, поэтому нуклеиновые кислоты называют полинуклеотидами.


    Каждый нуклеотид в свою очередь состоит из трех компонентов: азотистого основания, являющегося производным пурина или пиримидина, пентозы (рибозы или дезоксирибозы) и остатка фосфорной кислоты. В состав нуклеиновых кислот входят два производных пурина - аденин и гуанин и три производных пиримидина - цитозин, урацил (в РНК) и тимин (в ДНК). Пурины: аденин и гуанин входят в состав ДНК и РНК, пиримидины: цитозин и тимин - в состав ДНК, цитозин и урацил - в состав РНК.







    Свойства: несут отрицательный заряд проявляют кислотные свойства Номенклатура нуклеотидов: нуклеозид-5´-монофосфат, нуклеозид-5´-дифосфат, нуклеозид-5´-трифосфат. Строение АТФ Строение ЦТФ Нуклеотид = фосфорилированный нуклеозид = нуклеозид остатка H 3 PO 4


    Образование названий нуклеозидов и нуклеотидов аденозин-5`-монофосфат или адениловая кислота или АМФ аденинаденозин гуанин цитозин урацил тимин гуанозин цитидин уридин тимидин В случае дезоксирибонуклеотидов к названию основания прибавляется «дезокси» основаниенуклеозид Кирюхин Д.О.




    Известны также циклические нуклеотиды, в которых фосфорная кислота образует сложноэфирные связи одновременно с 5 и 3-атомами углерода рибозного цикла. Это аденозин-3,5-циклофосфат (цАМФ) и гуанозин-3,5- циклофосфат (цГМФ). Эти два нуклеотида не входят в состав НК, но играют роль передатчиков, вторичных посредников (мессенджеров) сигналов в клетке, стимулируя переход белков из неактивного состояния в активное, или наоборот.







    Первичная структура нуклеиновых кислот - это порядок чередования нуклеотидов, связанных друг с другом в линейной последовательности 3",5"- фосфодиэфирной связью. В результате образуются полимеры с фосфатным остатком на 5"-конце и свободной -ОН- группой пентозы на 3"-конце.


    Первичная структура нуклеиновых кислот Х = Н для ДНК, Х = ОН для РНК Связи в молекуле нуклеиновых кислот: 1 - 5"-фосфоэфирная (или сложноэфирная); 2 - N- гликозидная; 3 - 3",5"- фосфодиэфирная. Чтение последовательности производится от 5`-конца к 3`- концу.


    Для краткого изображения последовательности нуклеотидов в нуклеиновых кислотах пользуются однобуквенным кодом. При этом запись осуществляют слева направо таким образом, что первый нуклеотид имеет свободный 5"-фосфатный конец, а последний -ОН группу в положении 3" рибозы или дезоксирибозы. Так, первичная структура ДНК может быть записана следующим образом: CGTAAGTTCG... Если в изображаемом фрагменте ДНК нет Т, то перед началом записи ставится приставка д- (дезокси). Иногда полинуклеотидная цепь имеет противоположное направление, в этих случаях направление цепей обязательно указывается от 5"- к 3"- или от 3"- к 5"-концу. Первичную структуру РНК можно представить таким образом: САUUAGGUAA...




    Вторичная структура ДНК представлена двойной спиралью, в которой две полинуклеотидные цепи расположены антипараллельно и удерживаются относительно друг друга за счет взаимодействия между комплементарными азотистыми основаниями. Полинуклеотидные цепи молекулы ДНК неидентичны, но комплементарны друг другу.


    Все основания цепей ДНК расположены внутри двойной спирали, а пентозофосфатный остов - снаружи. Полинуклеотидные цепи удерживаются относительно друг друга за счёт водородных связей между комплементарными пуриновыми и пиримидиновыми азотистыми основаниями А и Т (две связи) и между G и С (три связи). При таком сочетании каждая пара содержит по три кольца, поэтому общий размер этих пар оснований одинаков по всей длине молекулы. Водородные связи при других сочетаниях оснований в паре возможны, но они значительно слабее. Комплементарые основания уложены в стопку в сердцевине спирали. Между основаниями двухцепочечной молекулы в стопке возникают гидрофобные взаимодействия (стекинг- взаимодействия), стабилизирующие двойную спираль.


    Наибольшее перекрывание наименьшее перекрывание Комплементарные основания обращены внутрь молекулы, лежат в одной плоскости, которая практически перпендикулярна оси спирали. В результате образуется стопка оснований, между которыми возникают гидрофобные взаимодействия, обеспечивающие основной вклад в стабилизацию структуры спирали.


    Существует несколько форм правозакрученной двойной спирали ДНК. В клетке ДНК чаще всего находится в В- форме, в которой на один виток спирали приходится до 10 пар нуклеотидов. В А- форме на 1 виток приходится 11 пар нуклеотидов, а в С- форме – 9,3 пар нуклеотидов. Цепи ДНК образуют 2 желоба - малую и большую борозды. Считается, что в А-форме ДНК принимает участие в процессах транскрипции, а в В- форме – в процессах репликации. Кроме правозакрученной спирали существует одна левая спираль ДНК - (Z -форма), в которой на один виток приходится 12 пар нуклеотидов.


    Третичная структура ДНК формируется при ее взаимодействии с белками. Каждая молекула ДНК упакована в отдельную хромосому, в составе которой разнообразные белки связываются с отдельными участками ДНК и обеспечивают суперспирализацию и компактизацию молекулы. Общая длина ДНК гаплоидного набора из 23 хромосом человека составляет 3,5 × 10 9 пар нуклеотидов. Хромосомы образуют компактные структуры только в фаз уделения. В период покоя комплексы ДНК с белками равномерно распределены по объему ядра, образуя хроматин. Белки хроматина делят на две группы: гистоны и негистоновые белки.


    Гистоны - это небольшие белки с высоким содержанием положительно заряженных аминокислот лизина и аргинина. Они взаимодействуют с отрицательно заряженными фосфатными группами ДНК длиной около 146 нуклеотидных пар, образуя нуклеосомы. Между нуклеосомами находится участок ДНК, включающий около 30 нуклеотидных пар, - линкерный участок, к которому также присоединяется молекула гистона. Негистоновые белки представлены множеством ферментов и белков, участвующих в синтезе ДНК и РНК, регуляции этих процессов, а также структурных белков, обеспечивающих компактизацию ДНК.






    Вторичная структура РНК формируется в результате спирализации отдельных участков одноцепочечной РНК. В спирализованных участках или шпильках комплементарные пары азотистых оснований А и U, G и С соединяются водородными связями. Длина спирализованных участков невелика, содержит от 20 до 30 нуклеотидных пар. Эти участки чередуются с неспирализованными участками молекулы. Третичная структура РНК формируется за счет образования дополнительных водородных связей между нуклеотидами, полинуклеотидной цепью и белками, стабилизируется ионами Мg 2+ и обеспечивает дополнительную компактизацию и стабилизацию пространственной структуры молекулы.


    Минорные основания входят в состав 10% от всех нуклеотидов. Обнаружено до 50 разновидностей. Встречаются в т-РНК, р-РНК и митохондриальной ДНК. Минорные основания выполняют 2 функции: они делают НК устойчивыми к действию нуклеаз и поддерживают определённую третичную структуру молекулы, так как не могут участвовать в образовании комплементарных пар, и препятствуют спирализации определённых участков в полинуклеотидной последовательности тРНК.


    Типы клеточной РНК в зависимости от функций. Вид РНКРазмер в нуклеотидах Функции 1Гетерогенный ядерные РНК (гяРНК) Проматричные РНК, которые в дальнейшем превратятся в матричные РНК 2Информационные или матричные РНК (иРНК или мРНК) Являются матрицами для синтеза белков 3Транспортные РНК (тРНК) 70-90Поставляют аминокислоты в ходе синтеза белков 4Рибосомальные РНК (рРНК) Несколько классов с размерами от 100 до Являются строительными блоками рибосом 5Малые ядерные РНК (мяРНК) Участвуют в упаковке рибопротеиновых частиц, сплайсинге и т.д.


    Транспортные РНК (тРНК) являются молекулами-адапторами, у которых к 3"-концу присоединяется аминокислота, а участок антикодона - к мРНК. Семейство тРНК включает более 30 различных по первичной структуре молекул, состоящих примерно из 80 нуклеотидов. Особенностью тРНК является содержание 10-20% модифицированных или минорных нуклеотидов. Вторичная структура тРНК описывается как структура клеверного листа, где наряду с 70% спирализованных участков имеются одноцепочечные фрагменты, не участвующие в образовании водородных связей между нуклеотидными остатками. К ним, в частности, относят участок, ответственный за связывание с аминокислотой на 3"-конце молекулы и антикодон - специфический триплет нуклеотидов, взаимодействующий комплементарно с кодоном мРНК. На долю тРНК приходится около 15% всей РНК клетки.




    Рибосомные РНК (рРНК) составляют около 80% всей РНК клетки и входят в состав рибосом. В цитоплазматические рибосомы эукариот входит 4 типа рРНК с разной константой седиментации (КС) - скоростью оседания в ультрацентрифуге (различают рРНК - 5S, 5,8S, 28S и 18S (S - коэффициент седиментации)). рРНК образуют комплексы с белками, которые называют рибосомами. Каждая рибосома состоит из двух субъединиц - малой (40S) и большой (60S). Комплекс большой и малой субъединиц рибосомы образует компактную частицу и имеет КС 80S. Матричные РНК (мРНК), или информационные, составляют 2-4% всей РНК клетки. Они чрезвычайно разнообразны по первичной структуре, и их количество столь же велико, как и число белков в организме, так как каждая молекула мРНК является матрицей в синтезе соответствующего белка.


    Отличия между РНК и ДНК: количество цепей: в РНК одна цепь, в ДНК две цепи, размеры: ДНК намного крупнее, локализация в клетке: ДНК находится в ядре, почти все РНК – вне ядра, вид моносахарида: в ДНК – дезоксирибоза, в РНК – рибоза, азотистые основания: в ДНК имеется тимин, в РНК – урацил. функция: ДНК отвечает за хранение наследственной информации, РНК – за ее реализацию.







    2. Энергетическая. Макроэргические молекулы (макроэрги) биологические молекулы, которые способны накапливать и передавать энергию в ходе реакции. При гидролизе одной из связей высвобождается более 20 к Дж/моль в отличие от простой связи, энергия которой составляет около 13 к Дж/моль. Все нуклеозидтрифосфаты и нуклеозиддифосфаты (АТФ, ГДФ и их аналоги) содержат одну или две фосфоангидридные связи, энергия каждой из них составляет 32 к Дж/моль.


    Наличие макроэргических связей в нуклеотидах позволяет им являться активаторами и переносчиками мономеров в клетке: УТФ - уридин трифосфорная кислота используется для синтеза гликогена, ЦТФ - цитидинтрифосфорная кислота - для синтеза липидов, ГТФ гуанозинтрифосфат - для движения рибосом в ходе трансляции (биосинтез белка) и передачи гормонального сигнала (G-белок).


    3. Регуляторная. Мононуклеотиды - аллостерические эффекторы многих ключевых ферментов, цАМФ и цГМФ являются посредниками в передаче гормонального сигнала при действии многих гормонов на клетку (аденилатциклазная система), они активируют протеинкиназы. Таким образом, нуклеотиды и нуклеиновые кислоты выполняют решающие функции по поддержанию гомеостаза организма.

    mob_info